ИГУ - «Известия Иркутского государственного университета»

«Известия Иркутского государственного университета»

Журнал ИГУ

Список выпусков > Серия «Математика» . 2014. Том 9

Прогнозирование параметров электроэнергетических систем используя преобразование Гильберта-Хуанга и машинное обучение

Автор(ы)
В. Г. Курбацкий, В. А. Спиряев, Н. В. Томин, П. Лихи, Д. Н. Сидоров, А. В. Жуков

Аннотация

Разработан гибридный подход прогнозирования нестационарных временных рядов. Подход продемонстрирован на примере задач прогнозирования параметров систем электроэнеретики. Предлагаемый адаптивный подход использует разложение на моды анализ признаков ретроспективных данных на основе преобразования Гильберта-Хуанга и алгоритмов машинного обучения. Используются методы машинного обучения на основе алгоритмов случайный лес (Random forest) и градиентный бустинг над деревьями (Gradient boosting trees). Эти методы, а также индекс Джини, используются для ранжирования значимости признаков в прогнозных моделях. Полученные гибридные прогнозные модели используют нейронную сеть на основе радиальных базисных функций и регресионную модель на основе метода опорных векторов. Помимо введения и списка источников статья организована следующим образом. Второй раздел содержит обзор современных подходов для краткосрочного прогнозирования параметров энергетических систем. В третьем разделе изложен разработанный гибридный подход, основанный на машинном обучении и использующий преобразование Гильберта-Хуанга для краткосрочного прогноза параметров электроэнеретических систем. В четвёртом разделе описаны алгоритмы обучения решающих деревьев для определения значимости переменных. В заключении представлены экспериментальные результаты в следующих электроэнергетических задачах: прогнозирование перетоков активной мощности, прогнозирования цен на электроэнергию и прогнозирование скорости и направления ветра для ветровых генераторов электроэнергии.

Ключевые слова
временной ряд, прогнозирование, интегральное преобразование, ИНС, МОВ, машинное обучение, бустинг, сингулярный интеграл, анализ признаков

УДК
518.517

Литература